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This work deals with the simulation study superconducting materials elastic properties. The study is based on the simulation 
of the acoustic signal V (z) received by the acoustic microscope. The simulated signal enabled us to know the variation of 
reflection coefficient ( )θR  which behaves as a function of incidence angle θ , from the analysis of ( )θR  and V(z)  we 
determines the elastic constant of the material studied. 
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1. Introduction 
 
The discovery of the supraconductivity at high critical 

temperature led to pursue the research toward the use of 
the acoustic methods in order to understand the 
mechanism of the supra conductivity. Several studies have 
been performed to solve the effect of the porosity on the 
elastic properties of the superconductive materials [1, 2] as 
well as the porous materials [3]. Concerned with the 
present field research orientations, we will base our 
research on the survey on the porosity effect and on the 
propagation manners and subsequently on the elastic 
properties in the superconductive materials while 
comparing our results with those of given in references [1] 
taken experimentally by micro scanning. The study given 
by acoustic microscopy of the materials properties requires 
the understanding of the phenomenon of wave propagation 
in solids and liquids phases as well as the knowledge of 
the laws that govern the wave transfers to the interfaces. 
The knowledge of the reflection coefficient ( )θR , 
according to the incidence angleθ , proves to be therefore 
necessary to determine and to analyze the different modes 
of propagation. It is therefore necessary to know, the 
amplitude, the direction of propagation and the 
polarization of the incidental wave, as well as the materials 
elastic properties. 

 
2. The reflection coefficient of ( )θR  
 
The coefficient ( )θR  expression determination 

method by using (.è) the mechanical balance, continuity of 
the constraints and displacements to the interface has been 
developed by Brekhovskikh [4]. 

The reflection coefficient for the materials massif is 
given by the expression [4, 5]: 
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Where: Z0 is the liquid acoustic impedance;  
Zl and Zs are the acoustic impedances longitudinal and 
transverse respectively of the solid. While equating the 
total impedance as follows: 
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We get the relation of the widely-known reflection 
coefficient in acoustics, either as:  
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In the most general case and under any impact, the angles 
of lθ  refraction and sθ and by continuation impedances 
acoustic Zl and Zs are complex numbers. The reflection 
function can be expressed in term of a complex shape: 
 

( ) ( )ξθ jR expΓ=  
 

Where Γ  is the module of ( )θR , and ξ  the phase.  
One will use this representation to determine the 

acoustic signature V as a function of (z) for the studied 
materials.         

In the case of a massive material one raises variations 
of phase and amplitude in the neighborhood of the critical 
angles: longitudinal, transverse and Rayleigh, which 
allows us to calculate the velocities of the different 
fashions. The theories concerning the propagation of the 
mechanical waves in the isotropic materials show that two 
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waves of volume can auto propagate [8, 9], these 
longitudinal and transversal waves have the respective 
speeds denoted by Vl and Vs. When the angle of impact of 
a longitudinal wave (in relation to the plan of the sample) 
becomes very important and reaches a critical value, three 
surface waves can be arise: the surface longitudinal wave, 
the surface transverse wave and the Rayleigh wave. In 
order to get the elastic constants, it is indispensable a 
priori to measure Vl and Vs.  

The variations more or less important of the module 
and the phase of ( )θR some critical angles are going to 
allow us to interpret the V curves. The simulation of the 
reflection coefficient of ( )θR for the studied 
superconductive material (DyBa2-xSrxCu3O7-δ); (x ~ 0.3 
and δ ~ 0.1) for different values of the porosity rate and for 
a frequency of 600 MHz is represented on the Figs. 1                      
and 2.  
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Fig. 1 variation of the module of R (.θ). 
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Fig. 2. Variation of the phase of R (.θ). 
 

One can notices an important displacement of the 
critical angles for all fashions in relation to the relative 
critical angles to the non porous material (p = 0 %), this 
displacement is toward the superior angles when the rate 
of porosity increases, that means a reduction of the 
velocity of these modes.  

3. Signature acoustic V (z) 
 
The micro characterization of a material passes by the 

determination of his/her/its signature acoustic V (z). 
The expression of V is given (z) by [4-7]: 
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Or: 1−=j , θmax is the maximal opening of the lens, 

( )θ2P  is the function pupil; R (θ) is the function of 
reflection of the specimen and k0 is the vector of wave in 
the liquid of coupling. 

The acoustic microscope is used in a reflection 
fashion; the piezoelectric translator transforms the acoustic 
signal coming from the sample in a V tension without 
losing the relative information to the studied material.   

The size of the measured V of the signal is a function 
of the unfocused (the z distance between the focal plan of 
the lens and the interface sample - liquid).  

This model allows us to calculate the speeds of the 
different modes from the period zΔ  as: 
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The Fig. 3 shows the signatures acoustic V(z) of the 

studied superconductive material (DyBa2-xSrxCu3O7-δ) for 
different values of the porosity rate and for a frequency of 
600 MHz.  
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Fig. 3. Signature acoustic V (z). 

 
 

The period of the pseudo oscillations zΔ decreases 
with the growth of the porosity rate. This qualitative 
analysis is confirmed by the reduction of the Rayleigh 
velocity (Table 1). 
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Table 1. Elastic constants. 
 

 Non porous Porous (10,9%) 
ρ  (kg/m3) 6920 6165,7 

Vs (m/s) 2874 2683 
Vl (m/s) 5274 4860 
VR (m/s) 2669 2378 
E (GPa) 147,3 117,6 

G (GPa) 116,3 93,9 

K (GPa) 57,2 45,5 

ν  0.2889 0.2912 
 
 
      4. Treatment of the signature acoustic V(z) by 

    Fourier Transformed (FFT): 
 
It is very difficult to determine the velocity of the 

different modes directly from the periodicity of the 
acoustic signature: Indeed, this curve is the superposition 
of the different modes of surface and the intrinsic answer 
of the lens.  

The V(z) signal can be called according to some 
manners in the goal to exploit it judiciously and in order to 
extract with precision the velocity of the different fashions 
to pull of it from the physical properties of the studied 
material.  

Several treatment techniques of the signature exist, the 
acoustic V(z) one of the most known methods and used 
extensively for the numeric treatment of V (z) is 
Transformed of Fourier (FFT). This treatment permits to 
award the different peaks singular of the discreet specter 
of V(z) that correspond to the different fashions of 
propagation of the acoustic wave. This is how one can 
determine the velocities of propagation of surface and 
volume. The signal acoustic V (t) is (z) in fact a 
transformed of Fourier of a function that one will note Q. 
If one can find the expression of this Q function as well as 
his/her/its variable t, then Q will be (t) transformed it of 
inverse Fourier of the signal acoustic V and (z) it is her 
that will give us the specter of V(z) (Fig. 4).  
 

 
Fig. 4. Transformed of Fourier FFT. 

Let's conduct the change of variables following [7]: 
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This change drives us to the equalities:   
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Which allow us to write the expression of the V(z)  under 
the shape: 
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It is therefore clear that V(z)  is Fourier transformed 

of the Q(u)  function. The V(u)  spectrum of will have like 
t abscissa and therefore it is also the V(z)  spectrum with 
as z abscissa. Now we show that this analysis allows us to 
discern the modes of surface. For this, let's take the 
simplest case where only one mode of surface is 
generated, the one of Rayleigh. In this case, we distinguish 
two important discontinuities in the Q(t)  function [5], the 

first to π
1

0 =t , bus above this value, Q(t)  annuls itself 

in a discontinuous way, and the second is to 
πθcos=Rt  bus to this value the phase of R(t)  

changes a discontinuous manner of 2.π. This last 
corresponds to the angle critical of Rayleigh, giving the VR 
velocity thus.  

 
 
5. Determination of the elastic properties: 
 
To calculate elastic properties for different velocities 

will permits us to determine the elastic parameters of the 
materials. There are four elastic constants [8, 9], wich are:  

• The Young modulus: 
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• The shear  modulus:    
    

2
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• The compressibility modulus:  
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• The Poisson coefficient: 
 

                )(2
2

22

22

ls

ls

VV
VV

−
−

=ν
 

 
Another method of calculation consists in getting the 
velocity from Rayleigh VR from the graph of the phase of 
the R(.θ) reflection coefficient and the velocity of the 
mode transverse Vl of the graph of the module of R(.θ). 
We use the relation of Victorov then to determine the 
longitudinal velocity to calculate the elastic constants. The 
relation of Victorov is given by the following [9]: 
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The values of the elastic constants for the superconductive 
material: (DyBa2-xSrxCu3O7-δ) porous with a rate of 
porosity of 10,9% and non porous are summarized               
Table 1. These results show a strong decrease of all elastic 
constants with the porosity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusion 
 
The simulation results of the signal received by the 

acoustic microscope and the analysis of the reflective 
power simulated according to the model of Brekhovskikh 
allowed us to characterize the superconductive materials; 
the obtained results are in perfect concordance with the 
results of reference [1].  
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